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min has not been previously reported. We now assign une­
quivocally the monocyanohemin to a low spin state from 
measurements of the paramagnetic susceptibility using the 
method described by Evans.12 Figure 3 shows the chemical 
shift difference between a 1% TMS in DMSO-^6 (in an in­
ternal capillary) and similar solutions containing hemin 
(0.02 M) and varying amounts of cyanide. The chemical 
shift difference, which is directly related to the bulk para­
magnetic susceptibility of the hemin solution, decreases lin­
early with added cyanide until a 1:1 ratio (cyanide:hemin) 
is reached and becomes constant thereafter. This demon­
strates that both 2 and 3 have the same paramagnetism 
and, therefore, are in the low spin state (S = 1I2). The close 
resemblance in the proton spectra between 2 and 3 also sup­
ports this assignment. Using the equation described by 
Brault and Rougee,'3 the effective magnetic moments (̂ eff) 
of iron(III) in 1 and 2 (or 3) in DMSO-^6 were determined 
to be 5.0 and 2.1 BM, respectively. These values are in good 
agreement with the reported high spin (̂ eff = 5.1-5.8 BM) 
and low spin (/ieff = 1.7-2.5 BM) values in other ferripor-
phyrin systems.4-" 

The presence of all three hemin spectra in the DMSO-Jg 
solution requires that they are in the NMR slow exchange 
limit region. Based on our data, the rate of exchange is cal­
culated to be slower than 160 sec-1 at 65°. A value of 60 
sec-1 at 30° was reported for the TPPFe-Cl-TV-methylim-
idazole system.2 
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Binding and Activation of Enzymic Substrates by 
Metal Complexes. II. Delocalized Acetylene 
Complexes of Molybdenum1 

Sir: 

In previous communications,2-4 we reported the synthesis 
and reactivity of several oxomolybdenum complexes con­
taining /V./V-dialkyldithiocarbamate and alkylxanthate lig-
ands, emphasizing possible relationships to molybdoen-
zymes, particularly nitrogenase. The oxidative addition of 
diazenes (RN=NR) to OMo(S2CNR2)2 and subsequent 
hydrolysis of the 1:1 adduct to yield a substituted hydrazine 
(RNHNHR) and O2Mo(S2CNRz)2 is thought to be partic­
ularly relevant. However, as these oxomolybdenum(IV) 
complexes added only highly activated multiple bonds, we 
sought more reactive entities and have investigated the re­
activity of some d4 Mo(II) compounds. These have in­
creased basicity, no oxo ligands, and also the capability of 
effecting a four-electron reduction of substrate (as opposed 
to the d2 Mo(IV) species). Herein we describe the prepara­
tion, characterization, and reactivity of a Mo(II) dithio-
phosphinate complex. 

Reaction of Mo(CO)4Cl2 (ref 5) with HS2P(Z-Pr)2 (ref 
6) in methanol gave a deep orange-red solution which 
changed to green on concentration in vacuo. Further con­
centration yielded green crystals of 1. After washing 
(MeOH) and drying in vacuo, elemental analysis (Calcd for 
Ci4H2SO2P2S4Mo: C, 32.7; H, 5.45. Found: C, 32.4; H, 
5.78), molecular weight (calcd, 514; found, 525, cryosco-
py), CO evolution data (1.95 mol/mol of complex), and ir 
spectroscopy (c(CO) 1960, 1860 cm -1) showed 1 to be cis-
Mo(CO)2[S2P(Z-Pr)2J2. 1 is diamagnetic (NMR, CDCl3). 

Addition of CO to a CH2Cl2 solution of 1 caused a 
change from green (Xmax 468 (« 480), Xmax 688 nm (« 900)) 
to red (Xmax 469 nm (e 456)) with the concomitant produc­
tion of three carbonyl bands (2040, 1990, and 1940 cm"1)-
When CO was removed in vacuo, the original visible and ir 
spectra returned. Such data are consistent with formation 
of Mo(CO)3[S2P(Z-Pr)2J2 (2) and provide conclusive evi­
dence for the reversibility of the CO uptake. Similar obser­
vations7 have been reported for other Mo(II) complexes, 
with dramatic color changes as CO is evolved or complexed. 
Attempts to isolate pure, crystalline 2 have been unsuccess­
ful.8 Evaporation of a solution of 2 in a stream of CO yields 
a red oil. 

Similarly, concentration of a reaction mixture containing 
1 and Ph3P gave red Mo(CO)2(Ph3P)[S2P(Z-Pr)2J2 (3), 
which was characterized by elemental analysis (calcd for 
C32H53O2P3S4Mo: C, 49.5; H, 5.54. Found; C, 48.9; H, 
5.61.) and ir spectroscopy (HCO) 1950, 1865 cm-1)- Disso­
lution of 3 in CH2Cl2 (ca. 1O-3 M) gave a green solution 
whose visible spectrum (Xmax 480 (e 437), 689 nm (e 705)) 
indicated the following equilibrium to be shifted far to the 
right under these conditions. 

Mo(CO)2PPh3[S2P(Z-Pr)2I2 ^ Mo(CO)2[S2P(/-Pr)2]2 + PPh3 
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At room temperature in CH2CI2, 1 reacted with acety­
lene (one mol per Mo) and the solution became light yel­
low-green. Removal of the solvent in vacuo and recrystalli-
zation (CH2Cl2-hexane) yielded the yellow-green solid, 
Mo(CO)(C2H2) [S2P(Z- Pr)2J2 (4). Anal. Calcd for 
Ci5H3 0O3P2S4Mo: C, 35.2; H, 5.91. Found: C, 34.8; H, 
6.27. The ir spectrum of 4 had bands at 1950 (KCO)), 
3070, 3150, and 745 c m - 1 (assigned to the C-H of the 
coordinated acetylene). No carbon-carbon stretch was ob­
served in the usual region,9 suggesting a significant pertur­
bation of the triple bond. Thermal decomposition (GLC in­
jection port) showed C 2 H 2 only, indicating the acetylene to 
be bound as a monomer. 

The NMR spectrum (CDCl3) of 4 exhibited, in addition 
to a complex signal for the isopropyl groups, a sharp singlet 
12.33 ppm downfield from TMS, which was assigned to the 
two protons of the coordinated acetylene. This extreme 
downfield shift (free acetylene is at 2.3 ppm) may be indic­
ative of a delocalized, 2-x aromatic system, 

Mo; 
.CH 

CH 

which could result if C 2H 2 behaved as a four-electron donor 
with both ir bonds interacting with appropriate empty metal 
orbitals.10 In contrast, similar derealization cannot occur 
for Pt(PPh3)2(C2H2) , generated in situ," due to the lack of 
empty metal orbitals. The acetylenic protons of the complex 
appear in the 7.3 ppm region, indicating that this compound 
represents the more-localized double bond arrangement, 

p < « " V 

^ H 

This correlation is consistent with carbon analogs; e.g., sim­
ilar relative shifts are found on comparing the localized 
double bond of cyclopropene, 

H,CC 
.CH 

Il 
VCH 

(olefinic protons at 7.01 p p m 1 2 ) with the a romat i c cyclopro-
penyl cat ion, 

,CH 
HC<j+) 

XH 

(ring protons a t 11.2 ppm 1 3 ) a l though some of the deshield-
ing in the lat ter case must result from the positive charge . 
T h e acetylenic protons in recently reported 1 4 

( C 5 H s ) 2 M o ( C 2 H 2 ) appear at 7.68 ppm. This chemical 
shift, together with the fact that a C = C stretch is observed 
at 1613 cm - 1 , suggests that the stereochemical and/or elec­
tronic properties of this complex are unsuitable for the delo^ 
calized interaction suggested for 4. 

1 also reacts with a variety of substituted acetylenes in­
cluding H C = C P h , CH 3 C=CPh , PhC=CPh , 
CH 3 O 2 CC=CCO 2 CH 3 , and H C = C C O 2 C H 3 to yield ana­
logs of 4. Adducts containing terminal acetylenic protons 
exhibit similar low field (12-13 ppm) resonances, suggest­
ing delocalized bonding. Unlike the platinum and molybdo-
cene systems, 1 does not react with ethylene, nor will this 
olefin displace acetylene from 4. 

Addition of HCl gas to a CH2Cl2 solution of 4 immedi­

ately produces ethylene (GLC and mass spectrometry). 
Only ~20% of the bound acetylene is converted, however, 
and current work is directed to explaining this result. Al­
though c/.y-2-butene has been produced by acidification of 
both (C5Hs)2Mo(CH3C2CH3) (ref 15) and 
Pt(PPh3)2(CH3C2CH3) (ref 16), our system is the first re­
ported where acetylene itself is reduced to ethylene via the 
two-step sequence of (i) oxidatively adding C2H2 to form an 
isolable complex and (ii) protonation of this intermediate to 
yield ethylene. 

We believe that these reactions with acetylenes are rele­
vant to the mechanism of nitrogenase catalysis. The Mo-
(CO)[S2P(Z-Pr)2J2 core may be considered as a coordina-
tively unsaturated 14-electron species, and thus may be re­
lated to the N2-reducing titanocene system.17 The driving 
force for formation of these acetylene (but not olefin) com­
plexes may be that Mo is attaining an inert gas configura­
tion by acceping four ir-electrons, a situation not possible 
with ethylene. Such reactivity parallels that of nitroge­
nase,18 and, as such, we suggest that the active site of the 
enzyme may also consist of a 14-electron, coordinatively 
unsaturated moiety. Thus N 2 would also have to interact as 
a four-electron donor in order to be reduced. The recently 
reported19 [C5(CH3)5]2TiN2 , suggested to involve "side 
on" bound N2 , may be an example of such an interaction. 
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